こんにちはゲストさん。会員登録(無料)して質問・回答してみよう!

解決済みの質問

楕円面上の法線ベクトル

楕円面 F(x,y,z) = x^2/a^2 + y^2/b^2 + z^2/c^2 -1 = 0
(a)楕円面上の点 P0 = (x0,y0,z0) における法線方向を指すベクトルを求めよ。

(b)P0における法線上の任意の点を P = (x,y,z) とすると、線分P0Pは(a)で求めたベクトルと平行である。このことを用いて、楕円面のP0を通る法線の方程式を求めよ。

(c)P0における接平面上の任意の点を P = (x,y,z) とすると、線分P0Pは(a)で求めたベクトルと垂直である。このことを用いて、楕円面のP0を通る法接平面の方程式を求めよ。

自分なりに考えた解答があっているかを教えていただきたいです-----

(a)原点 O = (0,0,0) から楕円面上の点 P0 = (x0,y0,z0) に伸ばしたベクトルは、当然 点P0の接平面 に垂直なので 法線ベクトル →P0 = (x0,y0,z0)

(b) →P0P = (x,y,z) - (x0,y0,z0) = (x-x0,y-y0,z-z0) これに平行なので (x-x0)/x0 = (y-y0)/y0 = (z-z0)/z0

(c) →P0P = (x,y,z) - (x0,y0,z0) = (x-x0,y-y0,z-z0) これに垂直なので内積がゼロ、よって x0(x-x0)+y0(y-y0)+z0(z-z0) = 0

-----

特に(b)はあっていますか?
よろしくおねがいします。

投稿日時 - 2007-08-07 16:18:42

QNo.3235596

暇なときに回答ください

質問者が選んだベストアンサー

あまり他人に頼りすぎないで自力で合っているか確認する努力が必要です。
係数や座標をすべて文字変数の一般式では本当に正しいかは確認できませんので係数や座標の文字変数の全てに具体的な値を与えて、実際にF(x,y,z)=0や接平面の3Dグラフや法線ベクトルの外形を描いてみてください。
そういうことをしないと、いつも自分で解析した結果が正しいかどうか自力で確証できず、いつまでも自信をもてませんよ。

一応、a,b,c,(x0,y0,z0)に具体的な1組の値を入れて3Dプロットした状態では
A#1の補足にお書きの(a),(b),(c)で正しいようです。
あなた自身でも確認されるよう希望します。

投稿日時 - 2007-08-08 09:29:44

お礼

どうもありがとうございました。
今回は関連の試験が明日に控えていることもあり
解答の正誤を優先してしまいました。

以後自分で確認するように気をつけたいと思います。

投稿日時 - 2007-08-08 12:22:47

ANo.2

このQ&Aは役に立ちましたか?

0人が「このQ&Aが役に立った」と投票しています

回答(2)

ANo.1

>(a)原点 O = (0,0,0) から楕円面上の点 P0 = (x0,y0,z0) に伸ばしたベクトルは、当然 点P0の接平面 に垂直なので 法線ベクトル →P0 = (x0,y0,z0)

球でなく、楕円面(a=b=cは成立していない)の場合が法線ベクトルになりません。
基本的なことを理解する必要がありますね。

この間違った法線ベクトルを使えば
>(b)→
>(c)→
は正しい結果が出てきません。

(a)の法線ベクトルは
(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))
です。
ここで、Fxは∂F/∂xのことです。

投稿日時 - 2007-08-07 19:30:20

補足

なるほど、確かに楕円は中心からかならずしも法線になるとは限りませんね。

ということは(a)の答えは
(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))
= (2*x0/a^2,2*y0/b^2,2*z0/c^2)
=2(x0/a^2,y0/b^2,z0/c^2)
法線方向のベクトルを示せばいいのでわかりやすく1/2倍して
(x0/a^2,y0/b^2,z0/c^2)
ということで間違いはないでしょうか?

他も修正して
(b) a^2*(x-x0)/x0 = b^2*(y-y0)/y0 = c^2*(z-z0)/z0
(c) x0*(x-x0)/a^2 + y0*(y-y0)/b^2 + z0*(z-z0)/c^2 = 0
で間違いないですか?

投稿日時 - 2007-08-07 22:15:39

あなたにオススメの質問